On the principal subalgebra of quantum enveloping algebras $\mathrm{gl}_{\mathrm{q}}(1+1)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1992 J. Phys. A: Math. Gen. 25 L213
(http://iopscience.iop.org/0305-4470/25/5/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.59
The article was downloaded on 01/06/2010 at 17:56

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the principal subalgebra of quantum enveloping algebras $\mathrm{gl}_{q}(\boldsymbol{l}+1)$

J Van der Jeugt ${ }^{\dagger}$
Laboratorium voor Numerieke Wiskunde en Informatica, Universiteit Gent, Krijgslaan 281-S9, B9000 Gent, Belgium

Received 12 September 1991

Abstract

The existence of a principal subalgebra of type $\operatorname{sl}_{q}(2)$ for quantum enveloping algebras $\mathrm{gl}_{q}(l+1)$ or $\mathrm{sl}_{q}(l+1)$ is investigated. Surprisingly, only when $l=2$ and when all relations are restricted to symmetric representations such a principal subalgebra happens to exist. This case, $\mathrm{sl}_{q}(3) \supset \mathrm{sl}_{q}(2)$, is the q-deformation of the classical $\mathrm{su}(3) \supset \mathrm{so}(3)$ embedding for symmetric $\mathrm{su}(3)$ representations, and is analysed in more detail, giving a connection with q-deformed spherical harmonics.

Principal three-dimensional subalgebras for simple Lie algebras were introduced by Dynkin (1957) and Kostant (1959). They have many important applications in mathematics, being related to the exponents of simple Lie groups (Kostant 1959) and to various combinatorial results obtained by Hughes (1977) and later generalized by Stanley (1980). In various physical models, the principal three-dimensional subalgebra plays a crucial role, since it is usually the subalgebra describing the angular momentum of the system (Hammermesh 1962). As examples, we mention here: Elliott's model $S U(3) \supset S O(3)$ (Elliott 1958); quadrupole vibrations of the nucleus (Bohr 1952, Chacón et al 1976) or octupole vibrations in which the chains $U(5) \supset O(5) \supset O(3)$ or $U(7) \supset$ $O(7) \supset G_{2} \supset O(3)$ appear (these appear also in atomic spectroscopy (Judd 1963)); the interacting boson model (Arima and Iachello 1976) has dynamical symmetries in which $U(3) \supset O(3)$ and $U(5) \supset O(5) \supset O(3)$ appear.

Let G_{l} be a simple Lie algebra of rank l, with Chevalley generators $\left\{e_{i}, f_{i}, h_{i} \mid i=\right.$ $1,2, \ldots, l\}$. A principal three-dimensional subalgebra of G_{l} is a subalgebra A of type sl(2), with basis $\{E, F, H\}$ satisfying

$$
\begin{equation*}
[H, E]=2 E \quad[H, F]=-2 F \quad[E, F]=H \tag{1}
\end{equation*}
$$

such that the number of irreducible components occurring in the complete reduction of the adjoint representation of G_{l} with respect to A is equal to l (Kostant 1959). The Lie algebra G_{l} has an involutive antiautomorphism σ defined by $\sigma\left(h_{i}\right)=h_{i}, \sigma\left(e_{i}\right)=f_{i}$ and $\sigma\left(f_{i}\right)=e_{i}$, which is related to Hermitian conjugation; if the principal subalgebra A is required to be invariant under σ, i.e. $\sigma(H)=H, \sigma(E)=F$ and $\sigma(F)=E$, then the elements of A have a unique expression in terms of the generators $\left\{e_{i}, f_{i}, h_{i}\right\}$. For

[^0]$G_{l}=A_{i}=\operatorname{sl}(l+1)$, one obtains
\[

$$
\begin{align*}
& H=\sum_{i=1}^{l} i(l+1-i) h_{i} \\
& E=\sum_{i=1}^{l} \sqrt{i(l+1-i)} e_{i} \tag{2}\\
& F=\sum_{i=1}^{l} \sqrt{i(l+1-i)} f_{i} .
\end{align*}
$$
\]

For $\operatorname{gl}(l+1)$, the Cartan subalgebra contains $l+1$ basis elements $N_{0}, N_{1}, \ldots, N_{l}$, which are related to the l basis elements h_{i} of $\mathrm{sl}(l+1)$ by $h_{i}=N_{i-1}-N_{i}(i=1,2, \ldots, l)$. Thus the principal subalgebra of $\mathrm{gl}(l+1)$ has the same form as (2), except that the diagonal element becomes

$$
\begin{equation*}
H=\sum_{i=0}^{l}(l-2 i) N_{i} . \tag{3}
\end{equation*}
$$

Quantum enveloping algebras are certain q-deformations of enveloping algebras of simple Lie algebras, being at the centre of much attention recently (e.g. Doebner and Hennig 1990). So far, however, very little work has been done in studying non-trivial subalgebras of quantum enveloping algebras (see e.g. Dobrev 1990). In this letter the investigation of principal subalgebras of quantum enveloping algebras of type $\mathrm{gl}_{q}(l+1)$ or $\mathrm{sl}_{q}(l+1)$ is initiated. The algebra $\mathrm{gl}_{q}(l+1)$ is the associative algebra spanned by generators $e_{i}, f_{i}(i=1,2, \ldots, l)$ and $N_{i}(i=0,1, \ldots, l)$ subject to the relations (Jimbo 1986)

$$
\begin{aligned}
& {\left[N_{i}, N_{j}\right]=0} \\
& {\left[N_{i}, e_{j}\right]=\left(\delta_{i, j-1}-\delta_{i j}\right) e_{j} \quad\left[N_{i}, f_{j}\right]=-\left(\delta_{i, j-1}-\delta_{i j}\right) f_{j}} \\
& {\left[e_{i}, f_{j}\right]=\delta_{i j}\left[N_{i-1}-N\right]} \\
& \sum_{k=0}^{1+\delta_{i-1, j}+\delta_{i, j-1}}(-1)^{k}\left[\begin{array}{c}
1+\delta_{i-1, j}+\delta_{i, j-1} \\
k
\end{array}\right] e_{i}^{1+\delta_{i-1, j}+\delta_{i, j-1}-k} e_{j} e_{i}^{k}=0 \\
& \sum_{k=0}^{1+\delta_{i-1, j}+\delta_{i, j-1}}(-1)^{k}\left[\begin{array}{c}
1+\delta_{i-1, j}+\delta_{i, j-1} \\
k
\end{array}\right] f_{i}^{1+\delta_{i-1, j}+\delta_{i, j-1}-k} f_{j} f_{i}^{k}=0
\end{aligned}
$$

where

$$
[x]=\frac{q^{x}-q^{-x}}{q-q^{-1}} \quad\left[\begin{array}{l}
x \\
y
\end{array}\right]=\frac{[x]!}{[y]![x-y]!}
$$

and $[x]!=[x][x-1] \ldots[1]$. In the limit $q \rightarrow 1$, this reduces to the universal enveloping algebra of $\mathrm{gl}_{q}(l+1)$.

A principal subalgebra of $\mathrm{gl}_{q}(l+1)$ is defined as follows: it is a subalgebra of $\mathrm{gl}_{q}(l+1)$ of type $\mathrm{sl}_{q}(2)$, i.e. its generators $\{E, F, H\}$ satisfy

$$
\begin{equation*}
[H, E]=2 E \quad[H, F]=-2 F \quad[E, F]=[H] \tag{5}
\end{equation*}
$$

and in the limit $q \rightarrow 1$, this $\mathrm{sl}_{q}(2)$ subalgebra reduces to the principal subalgebra of $\mathrm{gl}(l+1)$.

In this letter it is proved that principal subalgebras of $\mathrm{gl}_{q}(l+1)$ do not exist in general. It is shown, however, that when all relations are restricted to the totally symmetric representations of $\mathrm{gl}_{q}(l+1)$, a principal subalgebra does exist in the case $l=2$ but not for other l-values. The non-triviality of the solution with $l=2$ can be seen from the curious q-factors arising in (21). Some further aspects of $\mathrm{gl}_{q}(3) \supset \mathrm{sl}_{q}(2)$, which is the q-deformation of $\mathrm{su}(3) \supset \mathrm{so}(3)$, are discussed. A remarkable relation between q-numbers, equation (20), is obtained as a byproduct.

Since H is an ordinary diagonal operator in (5), and because of the limiting case (2) or (3), it follows that the most general form of a principal subalgebra is:

$$
\begin{align*}
& H=\sum_{i=0}^{l}(l-2 i) N_{i} \quad E=\sum_{i=1}^{l} \mu_{i}\left(N_{0}, \ldots, N_{l}\right) e_{i} \tag{6}\\
& F=\sum_{i=1}^{l} f_{i} \mu_{i}\left(N_{0}, \ldots, N_{l}\right)
\end{align*}
$$

where μ_{i} are (q-dependent) functions of N_{0}, \ldots, N_{l}, and invariance under σ has been assumed. The first two relations in (5) are satisfied by (6); the crucial relation to be satisfied is the third relation of (5). Let us concentrate for moment on the case $l=2$, and rewrite (6) in the form

$$
\begin{align*}
& H=2 N_{0}-2 N_{2} \\
& E=\alpha\left(N_{0} N_{1} N_{2}\right) e_{1}+e_{2} \beta\left(N_{0} N_{1} N_{2}\right) \tag{7}\\
& F=f_{1} \alpha\left(N_{0} N_{1} N_{2}\right)+\beta\left(N_{0} N_{1} N_{2}\right) f_{2}
\end{align*}
$$

When calculating [E, F], the terms in $e_{1} f_{2}$ and $e_{2} f_{1}$ must vanish, leading to the following condition on the functions α and β :
$\alpha\left(N_{0} N_{1} N_{2}\right) \beta\left(N_{0}-1, N_{1}+1, N_{2}\right)=\alpha\left(N_{0}, N_{1}+1, N_{2}-1\right) \beta\left(N_{0} N_{1} N_{2}\right)$.
Then, there comes

$$
\begin{align*}
{[E, F]=\alpha^{2}(} & \left.N_{0} N_{1} N_{2}\right) e_{1} f_{1}-\alpha^{2}\left(N_{0}+1, N_{1}-1, N_{2}\right) f_{1} e_{1} \\
& +\beta^{2}\left(N_{0}, N_{1}-1, N_{2}+1\right) e_{2} f_{2}-\beta^{2}\left(N_{0} N_{1} N_{2}\right) f_{2} e_{2} \tag{9}
\end{align*}
$$

The right-hand side of (9) should be expressible in terms of N_{0}, N_{1} and N_{2} only. It follows from (4) that this is the case only when the coefficients of $e_{i} f_{i}$ and $f_{i} e_{i}$ are equal, i.e.

$$
\begin{align*}
& \alpha\left(N_{0}+1, N_{1}-1, N_{2}\right)=\alpha\left(N_{0} N_{1} N_{2}\right) \\
& \beta\left(N_{0}, N_{1}-1, N_{2}+1\right)=\beta\left(N_{0} N_{1} N_{2}\right) \tag{10}
\end{align*}
$$

Then (9) becomes

$$
\begin{equation*}
[E, F]=\alpha^{2}\left(N_{0} N_{1} N_{2}\right)\left[N_{0}-N_{1}\right]+\beta^{2}\left(N_{0} N_{1} N_{2}\right)\left[N_{1}-N_{2}\right] \tag{11}
\end{equation*}
$$

such that the condition $[E, F]=[H]$ reduces to

$$
\begin{equation*}
\alpha^{2}\left(n_{0} n_{1} n_{2}\right)\left[n_{0}-n_{1}\right]+\beta^{2}\left(n_{0} n_{1} n_{2}\right)\left[n_{1}-n_{2}\right]=\left[2 n_{0}-2 n_{2}\right] \tag{12}
\end{equation*}
$$

where we have substituted ordinary variables n_{i} for the operators \bar{N}_{i}, which is allowed since the N_{i} are commuting operators. Replacing in (12) n_{0} by $n_{0}+1$ and n_{1} by $n_{1}-1$, and using (10), leads to
$\alpha^{2}\left(n_{0} n_{1} n_{2}\right)\left[n_{0}-n_{1}+2\right]+\beta^{2}\left(n_{0}+1, n_{1}-1, n_{2}\right)\left[n_{1}-n_{2}-1\right]=\left[2 n_{0}-2 n_{2}+2\right]$
or by iteration
$\alpha^{2}\left(n_{0} n_{1} n_{2}\right)\left[n_{0}-n_{1}+2 k\right]+\beta^{2}\left(n_{0}+k, n_{1}-k, n_{2}\right)\left[n_{1}-n_{2}-k\right]=\left[2 n_{0}-2 n_{2}+2 k\right]$.
Putting $k=n_{1}-n_{2}$ leads to

$$
\begin{equation*}
\alpha^{2}\left(n_{0} n_{1} n_{2}\right)=q^{n_{0}+n_{1}-2 n_{2}}+q^{-n_{0}-n_{1}+2 n_{2}} \tag{14}
\end{equation*}
$$

which satisfies indeed the first equation of (10). Using this in (12) then implies that

$$
\begin{equation*}
\beta^{2}\left(n_{0} n_{1} n_{2}\right)=q^{n_{1}-n_{2}}+q^{-n_{1} \times n_{2}} \tag{15}
\end{equation*}
$$

In conjunction with the second equation of (10), this leads to a contradiction unless $q=1$. Thus we have shown that a general principal subalgebra does not exist for $\mathrm{gl}_{q}(3)$. For $l>2$, the conclusion is the same, but we shall not present a detailed treatment here.

Although a general principal subalgebra does not exist for $\mathrm{gl}_{q}(3)$, we shall show in this section that it does exist when all relations are restricted to the completely symmetric representations of $\mathrm{gl}_{q}(3)$. These representations are labelled by $\{N, 0,0\}$ ($N \in\{0,1,2, \ldots\}$), and the basis vectors are of the form $\left|n_{0} n_{1} n_{2}\right\rangle$ with $n_{0}+n_{1}+n_{2}=N$. The action of the $\mathrm{gl}_{q}(3)$ generators is given by (Jimbo 1986):

$$
\begin{align*}
& N_{i}\left|n_{0} n_{1} n_{2}\right\rangle=n_{i}\left|n_{0} n_{1} n_{2}\right\rangle \quad(i=+1,0,-1) \\
& e_{1}\left|n_{0} n_{1} n_{2}\right\rangle=\sqrt{\left[n_{0}+1\right]\left[n_{1}\right]}\left|n_{0}+1, n_{1}-1, n_{2}\right\rangle \\
& e_{2}\left|n_{0} n_{1} n_{2}\right\rangle=\sqrt{\left[n_{1}+1\right]\left[n_{2}\right]}\left|n_{0}, n_{1}+1, n_{2}-1\right\rangle \tag{16}\\
& f_{1}\left|n_{0} n_{1} n_{2}\right\rangle=\sqrt{\left[n_{0}\right]\left[n_{1}+1\right]}\left|n_{0}-1, n_{1}+1, n_{2}\right\rangle \\
& f_{2}\left|n_{0} n_{1} n_{2}\right\rangle=\sqrt{\left[n_{1}\right]\left[n_{2}+1\right]}\left|n_{0}, n_{1}-1, n_{2}+1\right\rangle
\end{align*}
$$

The starting point is again (7), and the purpose is to find functions α and β such that (5) is satisfied on basis vectors of the form $\left|n_{0} n_{1} n_{2}\right\rangle$. The condition $[E, F]=[H]$ leads to the following two equations in α and β :

$$
\begin{align*}
& \alpha\left(n_{0} n_{1} n_{2}\right) \beta\left(n_{0}-1, n_{1}+1, n_{2}\right)=\alpha\left(n_{0}, n_{1}+1, n_{2}-1\right) \beta\left(n_{0} n_{1} n_{2}\right) \tag{17}\\
& \alpha^{2}\left(n_{0} n_{1} n_{2}\right)\left[n_{0}\right]\left[n_{1}+1\right]-\alpha^{2}\left(n_{0}+1, n_{1}-1, n_{2}\right)\left[n_{0}+1\right]\left[n_{1}\right]+\beta^{2}\left(n_{0}, n_{1}-1, n_{2}+1\right)\left[n_{1}\right] \\
& \times\left[n_{2}+1\right]-\beta^{2}\left(n_{0} n_{1} n_{2}\right)\left[n_{1}+1\right]\left[n_{2}\right]=\left[2 n_{0}-2 n_{2}\right] . \tag{18}
\end{align*}
$$

It is remarkable that this set of equations in two unknown functions α and β has a solution, namely

$$
\begin{align*}
& \alpha\left(n_{0} n_{1} n_{2}\right)=q^{n_{2}-\frac{1}{2} n_{1}} \sqrt{q^{n_{0}}+q^{-n_{0}}} \\
& \beta\left(n_{0} n_{1} n_{2}\right)=q^{n_{0}-\frac{1}{2} n_{1}} \sqrt{q^{n_{2}}+q^{-n_{2}}} \tag{19}
\end{align*}
$$

The verification of (18) depends upon a rather intriguing identity for q-numbers:

$$
\begin{gather*}
q^{2 z-y}[2 x][y+1]-q^{2 z-y+1}[2 x+2][y]+q^{2 x-y+1}[y][2 z+2] \\
-q^{2 x-y}[y+1][2 z]=[2 x-2 z] . \tag{20}
\end{gather*}
$$

Thus we have shown that $\mathrm{gl}_{q}(3)$ contains three elements

$$
\begin{align*}
& H=2 N_{0}-2 N_{2} \\
& E=q^{N_{2}-\frac{1}{2} N_{1}} \sqrt{q^{N_{0}}+q^{-N_{0}}} e_{1}+e_{2} q^{N_{0}-\frac{1}{2} N_{1}} \sqrt{q^{N_{2}}+q^{-N_{2}}} \tag{21}\\
& F=f_{1} q^{N_{2}-\frac{1}{2} N_{1}} \sqrt{q^{N_{0}}+q^{-N_{0}}}+q^{N_{0}-\frac{1}{2} N_{1} \sqrt{q^{N_{2}}+q^{-N_{2}}} f_{2}}
\end{align*}
$$

which satisfy the relations (5) of an $\mathrm{sl}_{q}(2)$ algebra when acting upon symmetric representations of $\mathrm{gl}_{q}(3)$, and which tend to the principal sl(2) subalgebra of $\mathrm{gl}(3)$ in the limit $q \rightarrow 1$.

It is easy to verify that (19) is a solution for the set (17), (18), but the reader may wonder how the solution (19) was obtained and if it is unique. The way we solved (17), (18) is as follows. For a chosen N-value, (17) and (18) are written down for all vectors $\left|n_{0} n_{1} n_{2}\right\rangle$ with $n_{0}+n_{1}+n_{2}=N$. This gives rise to a large system of nonlinear equations in a number of ordinary variables. For example, when $N=1$ there remain three equations in two unknowns $\alpha(100)$ and $\beta(001)$, but as N increases the system grows rapidly. For every N, one can try to solve this system. It turns out that for some small values of N the solution is not always unique, but as N increases a unique solution emerges, leading to (19).

This technique can be applied to $\mathrm{gl}_{q}(l+1)$ with $l>2$. Explicitly, we looked at symmetric representations $\{N, 0,0,0\}$ with basis states $\left|n_{0} n_{1} n_{2} n_{3}\right\rangle$ of $\mathrm{gl}_{q}(4)$, with E and F given by (6) in terms of three unknown functions μ_{1}, μ_{2} and μ_{3} (rather than two unknown functions α and β in the case of $\mathrm{gl}_{q}(3)$). The condition $[E, F]=[H]$ gives rise to equations similar to (17) and (18). When trying to solve these, a solution was obtained for $N=1$ and $N=2$. However, for $N=3$, leading to a system of 16 nonlinear equations in 16 variables, we are able to show that this system is inconsistent unless $q=1$ (this involved the help of macsyma). So $\mathrm{gl}_{q}(4)$ does not contain a principal subalgebra, even when all relations are restricted to symmetric representations only. For $\mathrm{gl}_{q}(l+1)$ with $l>3$ we have not performed any explicit calculations, but the $\mathrm{gl}_{q}(4)$ case seems to indicate that none of these algebras contains a principal subalgebra for the symmetric representations.

We continue here with the realization given above. In order to emphasize that we are dealing with a q-generalization of angular momentum, the states $\left\langle n_{0} n_{1} n_{2}\right\rangle$ shall now be denoted by $\left|n_{+1} n_{0} n_{-1}\right\rangle$, the index referring to angular momentum projection.

For such vectors belonging to the totally symmetric representations $\{N, 0,0\}$ of $\mathrm{gl}_{q}(3)$ or $\mathrm{u}_{q}(3)$, there exists a realization in terms of q-boson operators (Macfarlane 1989, Biedenharn 1989). Thus we assume there are three number operators N_{+1}, N_{0}, N_{-1} and three independent q-boson operators b_{i} and $b_{i}^{+}(i=+1,0,-1)$ satisfying

$$
\begin{equation*}
\left[N_{i}, b_{i}^{+}\right]=b_{i}^{+} \quad\left[N_{i}, b_{i}\right]=-b_{i} \quad b_{i} b_{i}^{+}-q^{-1} b_{i}^{+} b_{i}=q^{N_{i}} . \tag{22}
\end{equation*}
$$

The basis states are then of the form

$$
\begin{equation*}
\left|n_{+1} n_{0} n_{-1}\right\rangle=\frac{\left(b_{+1}^{+}\right)^{n_{+1}}\left(b_{0}^{+}\right)^{n_{0}}\left(b_{-1}^{+}\right)^{n_{-1}}}{\sqrt{\left[n_{+1}\right]!\left[n_{0}\right]!\left[n_{-1}\right]!}}|0\rangle \tag{23}
\end{equation*}
$$

with $b_{i}|0\rangle=0$ and $N_{i}\left|n_{+1} n_{0} n_{-1}\right\rangle=n_{i}\left|n_{+1} n_{0} n_{-1}\right\rangle$. The principal subalgebra, here denoted by $\mathrm{so}_{\boldsymbol{q}}(3)$, follows from (21):
$L_{0}=N_{+1}-N_{-1}$
$L_{+1}=q^{N_{-1}-\frac{1}{2} N_{0}} \sqrt{q^{N_{+1}+q^{-N_{+1}}}} b_{+1}^{+} b_{0}+b_{0}^{+} b_{-1} q^{N_{+1}-\frac{1}{2} N_{0}} \sqrt{q^{N_{-1}}+q^{-N_{-1}}}$
$L_{-1}=b_{0}^{+} b_{+1} q^{N_{-1}-\frac{1}{2} N_{0}} \sqrt{q^{N_{+1}}+q^{-N_{+1}}}+q^{N_{+1}-\frac{1}{2} N_{o}} \sqrt{q^{N_{-1}+q^{-N_{-1}}}} b_{-1}^{+} b_{0}$
compared with (21), we have chosen a different factor for the diagonal element, in order to realise the q-relations which are more familiar to physicists:

$$
\begin{equation*}
\left[L_{0}, L_{ \pm 1}\right]= \pm L_{ \pm 1} \quad\left[L_{+1}, L_{-1}\right]=\left[2 L_{0}\right] \tag{25}
\end{equation*}
$$

It is obvious that (24) is the q-generalization of the so(3) subalgebra of $u(3)$.

In the classical case of $u(3) \supset$ so(3), the symmetric representations $\{N, 0,0\}$ decompose into so(3) representations (L) with $L=N, N-2, \ldots, 1$ or 0 . In the q-generalized case, this decomposition is exactly the same. In fact, we have calculated the matrix elements relating the $\mathrm{so}_{q}(3)$ basis to the q-boson basis (23). For this purpose, the following operator can be introduced:

$$
\begin{equation*}
s=\left(b_{0}^{+}\right)^{2} q^{N_{+1}+N_{-1}+1}-\sqrt{\frac{\left[2 N_{+1}\right]}{\left[N_{+1}\right]} \frac{\left[2 N_{-1}\right]}{\left[N_{-1}\right]}} b_{+1}^{+} b_{-1}^{+} q^{-N_{0}-\frac{t}{2}} . \tag{26}
\end{equation*}
$$

It can be verified that s is an $s_{q}(3)$ scalar, i.e. $\left[L_{i}, s\right]=0(i=+1,0,-1)$. Then we have, in terms of the states (23), that:

$$
\begin{align*}
v(N, L, M)= & q^{-((L+M)(L+M-1)] / 4}\left\{\frac{[N+L]!![2 L+1]}{[N-L]!![N+L+1]!}[L+M]![L-M]!\right\}^{1 / 2} \\
& \times \sum_{x} q^{(2 L-1) x / 2} s^{(N-L) / 2} \frac{|x, L+M-2 x, x-M\rangle}{\sqrt{[2 x]!![L+M-2 x]![2 x-2 M]!!}} \tag{27}
\end{align*}
$$

where x runs from $\max (0, M)$ to $\lfloor(L+M) / 2\rfloor$ in steps of one, $L=N, N-2, \ldots, 1$ or 0 , and $M=-L,-L+1, \ldots,+L$. As usual, the symbol [2t]!! stands for [2t][2t-2] \ldots..[2]. The vectors (27) are genuine orthonormal q-generalized angular momentum states:

$$
\begin{align*}
& L_{0} v(N, L, M)=M v(N, L, M) \\
& L_{ \pm 1} v(N, L, M)=\sqrt{[L \mp M][L \pm M+1]} v(N, L, M \pm 1) \tag{28}
\end{align*}
$$

The classical analogue of (27) was given by Sharp et al (1969) and by Moshinsky et al (1975). There, the so(3) states are in an obvious way related to spherical harmonics. In a following paper, we intend to give more details on the derivation of (27) and to relate the states $v(N, L, M)$ to functions which can be seen as q-generalized spherical harmonics.

References

Arima A and lachello F 1976 Ann. Phys. 99253
Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
Bohr A 1952 Kgl. Dan. Videnskab. Selsk. mat. Fys. Medd. 2614
Chacón E, Moshinsky M and Sharp R T 1976 J. Math. Phys. 17668
Dobrev V K 1990 Lecture Notes in Physics 370107
Doebner H-D and Hennig J-D 1990 Quantum Groups Lecture Notes in Physics 370 (Berlin: Springer)
Dynkin E B 1957 Am. Math. Soc. Transl. Ser. 26111
Elliott J P 1958 Proc. R. Soc. A 245 128, 562
Hamermesh M 1962 Group Theory and its Applications to Physical Problems (London: Addison-Wesley)
Hughes J W B 1977 in Number Theory and Algebra ed H Zassenhaus (New York: Academic) p 135
Jimbo M 1986 Field Theory, Quantum Gravity and Strings Lecture Notes in Physics 246 ed H J de Vega and N Sánchez (Berlin: Springer) p 335
Judd B R 1963 Operator Techniques in Atomic Spectroscopy (New York: McGraw-Hill)
Kostant B 1959 Am. J. Math. 81973
Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
Moshinsky M, Patera J, Sharp R T and Winternitz P 1975 Ann. Phys. 95139
Sharp R T, von Baeyer H C and Pieper S C 1969 Nucl. Phys. A 127513
Stanley R P 1980 Combinatorics, representation theory and statistical methods in groups Lecture Notes in Pure and Applied Mathematics vol 57 ed T V Narayana, R M Mathsen and J G Williams (New York: Dekker) p 127

[^0]: \dagger Research Associate of the NFWO (National Fund for Scientific Research of Belgium).

