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LETTER TO THE EDITOR 

On the principal subalgebra of quantum enveloping algebras 
g w  + 1) 

J Van der Jeugtt 
Laboratorium voor Numerieke Wiskunde en Informatics, Universiteit Gent, Krijgslaan 
281-S9, 89000 Gent, Belgium 

Received I2 September 1991 

Abstract. The existence of a principal subalgebra of type sl,(2) for quantum enveloping 
algebras gl,(l+ 1) or sl,(l+ 1) is investigated. Surprisingly, only when I = 2 and when all 
relations are restricted to symmetric representations such a principal subalgebra happens 
to exist. This case, slq(3)=slq(2), is the q-deformation of the classical su(3)3s0(3) 
embedding for symmetric 4 3 )  representations, and is analysed in more detail, giving a 
connection with q-deformed spherical harmonia. 

Principal three-dimensional subalgebras for simple Lie algebras were introduced by 
Dynkin (1957) and Kostant (1959). They have many important applications in mathe- 
matics, being related to the exponents of simple Lie groups (Kostant 1959) and to 
various combinatorial results obtained by Hughes (1977) and later generalized by 
Stanley (1980). In various physical models, the principal three-dimensional subalgebra 
plays a crucial role, since it is usually the subalgebra describing the angular momentum 
of the system (Hammermesh 1962). As examples, we mention here: Elliott's model 
SU(3) 3 SO(3) (Elliott 1958); quadrupole vibrations ofthe nucleus (Bohr 1952, Chac6n 
et ol 1976) or octupole vibrations in which the chains U(5) 3 O(5) 3 O(3) or U(7) 3 

O(7) 3G2 3 0 ( 3 )  appear (these appear also in atomic spectroscopy (Judd 1963)); the 
interacting boson model (Arima and Iachello 1976) has dynamical symmetries in which 
U(3) 3 O(3) and U(5) 3 O(5) 3 O(3) appear. 

Let GI be a simple Lie algebra of rank /, with Chevalley generators {ei,f;, hili = 
1,2,. . . ,/}. A principal three-dimensional subalgebra of GI is a subalgebra A of type 
s1(2), with basis {E, F, H }  satisfying 

[ H , E ] = 2 E  [H, F] = -2F [ E , F ] = H  (1) 

such that the number of irreducible components occumng in the complete reduction 
of the adjoint representation of G, with respect to A is equal to l (Kostant 1959). The 
Lie algebra G, has an involutive antiautomorphism U defined by u ( h i )  = hi, u ( e , )  =f; 
and U(&) = e,, which is related to Hermitian conjugation; if the principal subalgebra 
A is required to be invariant under o, i.e. u ( H )  = H, u(E) = F and u ( F )  = E, then 
the elements of A have a unique expression in terms of the generators (ei.f;, h(} .  For 
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Cl =Al = S I (  I +  l ) ,  one obtains 

H =  i(l+l-i)h, 
i=, 

E = X  di( l+ l - i )e ,  
;=I 

I 
F =  1 di(l+l-i)f; .  

2 - 1  

For gl( I +  l) ,  the Cartan subalgebra contains I +  1 basis elements N o ,  N, , . . . , NI, which 
are related to the I basis elements hi of sl(I+ 1)  by hi = Nj-l - N, ( i  = 1,2, .  . . , I). Thus 
the principal subalgebra of gl( I +  1 )  has the same form as (2), except that the diagonal 
element becomes 

I 

H =  1 (I-Zi)N,. (3) 
,=0 

Quantum enveloping algebras are certain q-deformations of enveloping algebras 
of simple Lie algebras, being at  the centre of much attention recently (e.g. Doebner 
and Hennig !990), So far, however, very little work has been done in studying non-trivial 
subalgebras of quantum enveloping algebras (see e.g. Dobrev 1990). In this letter the 
investigation of principal subalgebras of quantum enveloping algebras of type gl,( I + 1) 
or sI,(l+l)  is initiated. The algebra gl,,(I+l) is the associative algebra spanned by 
generators q,f; ( i  = 1,2, . . . , I) and N; ( i  = 0, 1,  . . . , I) subject to the relations (Jimbo 
1986) 

[N;,?$]=O 

[N,, ejl = ( S u - , - 4 j ) e j  [ Nt , f; 1 = 4 &,j- I - 8, )f; 
[ei,f;l = S.[Nj-, - NI 

where 

and [x]!=[x][x- 11.. . [l]. In the limit q+ 1, this reduces to the universal enveloping 
algebra of gl,(l+ 1). 

A principal subalgebra of gI,(I+l) is defined as follows: it is a subalgebra of 
gl,(I+ 1) of type s1,(2), i.e. its generators {E, F, H )  satisfy 

[H, E]  = 2 E  [ H , F ] = - 2 F  [ E ,  Fl = [HI . ( 5 )  

and in the limit q + 1, this s1,(2) subalgebra reduces to the principal subalgebra of 
gl( l+l) .  
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In this letter it is proved that principal subalgebras of g lq( /+ l )  do not exist in 
general. It is shown, however, that when all relations are restricted to the totally 
symmetric representations of gl,(/+ l), a principal subalgebra does exist in the case 
/ = 2 but not for other /-values. The non-triviality of the solution with I = 2 can be seen 
from the curious q-factors arising in (21). Some further aspects of gl,(3) 3 s1,(2), which 
is the q-deformation of 4 3 )  3 so(3), are discussed. A remarkable relation between 
q-numbers, equation (20) ,  is obtained as a byproduct. 

Since H is an ordinary diagonal operator in ( 5 ) ,  and because of the limiting case 
(2) or ( 3 ) ,  it follows that the most general form of a principal subalgebra is: 

F =  1 Lpi(No, .  . . , N I )  
i= I 

where pj  are (q-dependent) functions of No, .  . . , N,,  and invariance under U has been 
assumed. The first two relations in ( 5 )  are satisfied by (6); the crucial relation to be 
satisfied is the third relation of ( 5 ) .  Let us concentrate for a moment on the case 1 = 2, 
and rewrite (6) in the form 

fj = ZN0 - 1 N2 

E = a ( N O N  W e 1  + e2P ( N O N ,  N2)  

F =f ia(NoN,NJ + P ( N O N ,  N A h .  

(7) 

When calculating [E, F], the terms in elf2 and e2f, must vanish, leading to the following 
condition on the functions a and p:  

a ( NON, N2)P (No - 1, N ,  + 1 ,  N2) = a ( No, NI + 1, Nz - 1 )P (NON,  N2 ). 

[ E ,  FI = a 2 ( N O N I N 2 ) e l f l  -a2(&+ 1, N I  - 1 ,  N d f l e l  

(8) 
Then, there comes 

+ P'( No, N I  - 1, Nz + 1 k2f2 - P'( NoNI N 2 ) f e 2 .  (9) 

The right-hand side of (9) should be expressible in terms of No,  N ,  and N2 only. It 
follows from (4) that this is the case only when the coefficients of e,J and Lej are 
equal, i.e. 

a( No+ 1, NI - 1, N 2 )  = a(  NoN,N2) 

P(No,  Nt-1 ,  N > + l ) = P ( N o N I N d ,  
(10) 

Then (9) becomes 

[E, Fl= ~ 2 ( N ~ N ~ N ~ ) [ N ~ - N ~ 1 + P 2 ( ~ ~ N ~ N ~ ) [ N ~ - N 2 1  ( 1 1 )  

az(nonln2)[no- nll+P2(nonln2)[nl - n21 =[2no-2n21 (12) 

such that the condition [E, F ]  = [ H I  reduces to 

where we have substituted ordinary variables nj  for the operators N-<, which is allowed 
since the N, are commuting operators. Replacing in (12) no by no+ 1 and n,  by n ,  - 1, 
and using (10). leads to 

n 2 ( n , n , n , ) [ n , - n , + 2 ] + ~ 2 ( n o +  1, n, -  1, n2)[nl - n2-  1]=[2no-2n,+2] 
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or by iteration 
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a 2 ( n o n , n 2 ) [ n o -  n l + 2 k l + P 2 ( n o + k ,  n,  -k ,  n2)[nl - n2-k l  =[2no-2n2+2k]. (13) 

Putting k = n,  - n2 leads to 

a 2 ( n o n , n 2 )  = q"o+"1-2"'+ q-"o-"1+2"* (14) 

which satisfies indeed the first equation of (10). Using this in (12) then implies that 

P2(non,n2)  = q " ' - " l + q - " l x " 2 .  (15) 

In conjunction with the second equation of (10). this leads to a contradiction unless 
q = 1 .  Thus we have shown that a general principal subalgebra does not exist for g1,(3). 
For I > 2, the conclusion is the same, but we shall not present a detailed treatment here. 

Although a general principal subalgebra does not exist for g1,(3), we shall show 
in this section that it does exist when all relations are restricted to the completely 
symmetric representations of g1,(3). These representations are labelled by { N, 0, 0} 
( N E  (0, 1 , 2 , .  . . }), and the basis vectors are of the form In,n,n2) with no+ n ,  + n2 = N. 
The action of the g1,(3) generators is given by (Jimbo 1986): 

The starting point is again (7), and the purpose is to find functions a and p such 
that ( 5 )  is satisfied on basis vectors of the form In,n,n2). The condition [E, F ]  = [HI 
leads to the following two equations in a and p :  
4 n o n , n 2 ) B ( n o - l ,  n , + l ,  n 2 ) = 4 n o ,  n , + L  n2-I)p(nonln2) 

x [ n 2 +  1]-p2(non,n2)[n,+ 1][n2] = [2nn-2n2]. 

(17) 

a2(nnnln2)[noI[n,+ 1 l -a2 (n0+  I ,  n1 - 1 ,  ~ 2 ) [ n o + ~ ] [ n , l + ~ 2 ( n o ,  n,- 1, n2+1)[nll 

(18) 

It is remarkable that this set of equations in two unknown functions a and p has a 
solution, namely 

"*-I",JW 
P(nontn2) = 4 *,-I. ,  J4.2+4-.' 

q2z-y[2x][y+ 13 - q2Z-Yf'[2x+2][y]+ q2X-y+l[y1[22+21 

- q 2 x - y y +  1][22] = [2x -221. 

(19) 
a(nonln2)= 

The verification of (18) depends upon a rather intriguing identity for q-numbers: 

(20) 
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which satisfy the relations ( 5 )  of an s1,(2) algebra when acting upon symmetric 
representations of g1,(3), and which tend to the principal sI(2) subalgebra of gl(3) in 
the limit 9 + 1. 

It is easy to verify that (19) is a solution for the set (17) ,  (18) ,  but the reader may 
wonder how the solution (19) was obtained and if it is unique. The way we solved 
(171, (18) is as follows. For a chosen N-value, (17) and (18)  are written down for all 
vectors Inonln2) with n o + n , + n , =  N. This gives rise to a large system of nonlinear 
equations in a number of ordinary variables. For example, when N = 1 there remain 
three equations in two unknowns a(100) and p(OOl), but as N increases the system 
grows rapidly. For every N, one can try to solve this system. It turns out that for some 
small values of N the solution is not always unique, hut as N increases a unique 
solution emerges, leading to (19). 

This technique can be applied to gl , ( l+ l )  with />2.  Explicitly, we looked at 
symmetric representations IN, O,O, O} with basis states Inon,n2n,) of g1,(4), with E and 
F given by (6) in terms of three unknown functions plr  p2 and p, (rather than two 
unknown functions a and p in the case of glq(3)), The condition [E, F ]  = [ H I  gives 
rise to equations similar to (17) and (18). When trying to solve these, a solution was 
obtained for N = 1 and N = 2. However, for N = 3, leading to a system of 16 nonlinear 
equations in 16 variables, we are able to show that this system is inconsistent unless 
9 = 1 (this involved the help of MACSYMA). So g1,(4) does not contain a principal 
subalgebra, even when all relations are restricted to symmetric representations only. 
For & ( I +  1 )  with 1 > 3  we have not performed any explicit calculations, but the g1,(4) 
case seems to indicate that none of these algebras contains a principal subalgebra for 
the symmetric representations. 

We continue here with the realization given above. In order to emphasize that we 
are dealing with a q-generalization of angular momentum, the states Inon,n,) shall now 
be denoted by ln+,non_,) ,  the index referring to angular momentum projection. 

For such vectors belonging to the totally symmetric representations (N, 0, 0} of 
gIq(3) or u,(3), there exists a realization in terms of q-boson operators (Macfarlane 
1989, Biedenharn 1989). Thus we assume there are three number operators 
N,,, No, N-, and three independent q-boson operators b, and b: ( i = + l , O ,  - 1 )  
satisfying 

[NE, b:l = b: [ N , , b , l = - b ,  b,b:-q-'b:b, = 9 " .  (22) 
The basis states are then of the form 

with bJO) = 0 and N,/n+,non_,) = n, ln+,non_, ) .  The principal subalgebra, here denoted 
by SO$.), follows from (21): 

L,, = qN-~-4N4/9N+~+q-N+t  b : , b o + b ~ b _ , q N + n - h N ~  4N.' + p' 
Lo= N + , -  N-, 

(24) 
L _ ,  = b ~ b + , q N - ~ - 4 N o J q N ~ ~ + q - N + ~ + q N + ~ - ~ N ~ q N - ~  + q - N - ~  b',b, 

compared with (Zl), we have chosen a different factor for the diagonal element, in 
order to realise the q-relations which are more familiar to physicists: 

[ L o ,  L * J =  *L*1 [L+I, L - J =  W O ] .  ( 2 5 )  
It is obvious that (24) is the q-generalization of the so(3) subalgebra of 4 3 ) .  
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In the classical case of u(3) 3 s0(3), the symmetric representations (N ,  0,O) decom- 
pose into so(3) representations ( L )  with L =  N, N - 2 , .  . . , 1 or 0. In the q-generalized 
case, this decomposition is exactly the same. In fact, we have calculated the matrix 
elements relating the s0,(3) basis to the q-boson basis (23). For this purpose, the 
following operator can be introduced: 

It can be verified that s is an so,(3) scalar, i.e. [Li, SI = 0 ( i  = +l,  0, -1 ) .  Then we have, 
in terms of the states (23), that: 

[ L + MI!  [ L - MI! I (  L+M)(L+ M-I)]/4 N + LI ! [2L + 11 

{[N - L] ! ! [ N + L+ 11 ! 
U( N, L, M )  = q- 

where x runs from max(0, M) to L(L+M)/ZJ in steps of one, L= N, N - 2 , .  . . , 1 or 
0, and M = -L, -L+ 1 , .  . . , + L. As usual, the symbol [2t]!! stands for [21][21-2] 
. . . [2]. The vectors (27) are genuine orthonormal q-generalized angular momentum 
states: 

L,u(N, L , M ) = M u ( N , L , M )  

L,,u(N, L, M )  = J [ L T  M ] [ L - t  M +  l]u(N, L, M f 1). 
(28) 

The classical analogue of (27) was given by Sharp e/ al (1969) and by Moshinsky et 
01 (1975). There, the SO(3) states are in an obvious way related to spherical harmonics. 
In a following paper, we intend to give more details on the derivation of (27) and to 
relate the states u(N,  L, M) to functions which can be seen as q-generalized spherical 
harmonics. 
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